Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Hum Kinet ; 91(Spec Issue): 205-223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38689583

RESUMO

Systemic resistance training aims to enhance performance by balancing stress, fatigue and recovery. While fatigue is expected, insufficient recovery may temporarily impair performance. The aim of this review was to examine evidence regarding manipulation of resistance training variables on subsequent effects on recovery and performance. PubMed, Medline, SPORTDiscus, Scopus and CINAHL were searched. Only studies that investigated recovery between resistance training sessions were selected, with a total of 24 articles included for review. Training to failure may lengthen recovery times, potentially impairing performance; however, it may be suitable if implemented strategically ensuring adequate recovery between sessions of similar exercises or muscle groups. Higher volumes may increase recovery demands, especially when paired with training to failure, however, with wide variation in individual responses, it is suggested to start with lower volume, monitor recovery, and gradually increase training volume if appropriate. Exercises emphasising the lower body, multi-joint movements, greater muscle recruitment, eccentric contractions, and/or the lengthened position may require longer recovery times. Adjusting volume and frequency of these exercises can affect recovery demands depending on the goals and training logistics. Daily undulating programming may maximise performance on priority sessions while maintaining purposeful and productive easy days. For example, active recovery in the form of training opposing muscle groups, light aerobic cardio, or low-volume power-type training may improve recovery and potentially elicit a post activation potentiation priming effect compared to passive recovery. However, it is possible that training cessation may be adequate for allowing sufficient recovery prior to sessions of importance.

2.
Int J Sports Physiol Perform ; 19(2): 195-206, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134897

RESUMO

Despite previous support for plyometric training, optimal dosing strategies remain unclear. PURPOSE: To investigate vertical and horizontal jump kinetic performance following a low-volume plyometric stimulus with progressively increased session jump volume. METHODS: Sixteen academy rugby players (20.0 [2.0] y; 103.0 [17.6] kg; 184.3 [5.5] cm) volunteered for this study. Vertical and horizontal jump sessions were conducted 1 week apart and consisted of a 40-jump low-volume plyometric stimulus using 4 exercises, after which volume was progressively increased to 200 jumps, using countermovement jump (CMJ) for vertical sessions and horizontal broad jump (HBJ) for horizontal sessions. Jump performance was assessed via force-plate analysis at baseline (PRE-0), following the low-volume plyometric stimulus (P-40), and every subsequent 10 jumps until the end of the session (P-50, P-60, P-70, ... P-200). RESULTS: The low-volume stimulus was effective in potentiating HBJ (2% to 5%) but not CMJ (0% to -7%) performance (P < .001). The HBJ performance enhancements were maintained throughout the entire high-volume session, while CMJ realized small but significant decrements (-5% to -7%) in jump height P-50 to P-80 before recovering to presession values. Moreover, increases in eccentric impulse (5% to 24%; P < .001) in both sessions were associated with decreased or maintained concentric impulse, indicating a breakdown in performance-augmenting mechanisms and less effective power transfer concentrically after moderate volumes. CONCLUSION: Practitioners should consider kinetic differences between HBJ and CMJ with increasing volume to better inform and understand session dosing strategies.


Assuntos
Desempenho Atlético , Exercício Pliométrico , Humanos , Cinética , Exercício Físico , Análise e Desempenho de Tarefas , Fadiga , Força Muscular
3.
Appl Physiol Nutr Metab ; 48(11): 829-840, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390497

RESUMO

Evaluating anatomical contributions to performance can increase understanding of muscle mechanics and guide physical preparation. While the impact of anatomy on muscular performance is well studied, the effects of regional quadriceps architecture on rapid torque or force expression are less clear. Regional (proximal, middle, and distal) quadriceps (vastus lateralis, rectus femoris, and vastus intermedius) thickness (MT), pennation angle (PA), and fascicle length (FL) of 24 males (48 limbs) were assessed via ultrasonography. Participants performed maximal isometric knee extensions at 40°, 70°, and 100° of knee flexion to evaluate rate of force development from 0 to 200 ms (RFD0-200). Measurements were repeated on three occasions with the greatest RFD0-200 and mean muscle architecture measures used for analysis. Linear regression models predicting angle-specific RFD0-200 from regional anatomy provided adjusted correlations (√adjR2) with bootstrapped compatibility limits. Mid-rectus femoris MT (√adjR2 = 0.41-0.51) and proximal vastus lateralis FL (√adjR2 = 0.42-0.48) were the best single predictors of RFD0-200, and the only measures to reach precision with 99% compatibility limits. Small simple correlations were found across all regions and joint angles between RFD0-200 and vastus lateralis MT (√adjR2 = 0.28 ± 0.13; mean ± SD), vastus lateralis FL (√adjR2 = 0.33 ± 0.10), rectus femoris MT (√adjR2 = 0.38 ± 0.10), and lateral vastus intermedius MT (√adjR2 = 0.24 ± 0.10). Between-correlation comparisons are reported within the article. Researchers should measure mid-region rectus femoris MT and vastus lateralis FL to efficiently and robustly evaluate potential anatomical contributions to rapid knee extension force changes, with distal and proximal measurements providing little additional value. However, correlations were generally small to moderate, suggesting that neurological factors may be critical in rapid force expression.


Assuntos
Articulação do Joelho , Músculo Quadríceps , Masculino , Humanos , Músculo Quadríceps/fisiologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Ultrassonografia , Torque
4.
J Strength Cond Res ; 36(1): 284-288, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593034

RESUMO

ABSTRACT: Oranchuk, DJ, Storey, AG, Nelson, AR, Neville, JG, and Cronin, JB. Variability of multiangle isometric force-time characteristics in trained men. J Strength Cond Res 36(1): 284-288, 2022-Measurements of isometric force, rate of force development (RFD), and impulse are widely reported. However, little is known about the variability and reliability of these measurements at multiple angles, over repeated testing occasions in a homogenous, resistance-trained population. Thus, understanding the intersession variability of multiangle isometric force-time characteristics provides the purpose of this article. Three sessions of isometric knee extensions at 40°, 70°, and 100° of flexion were performed by 26 subjects across 51 limbs. All assessments were repeated on 3 occasions separated by 5-8 days. Variability was qualified by doubling the typical error of measurement (TEM), with thresholds of 0.2-0.6 (small), 0.6-1.2 (moderate), 1.2-2.0 (large), 2.0-4.0 (very large), and >4.0 (extremely large). In addition, variability was deemed large when the intraclass correlation coefficient (ICC) was <0.67 and coefficient of variation (CV) >10%; moderate when ICC >0.67 or CV <10% (but not both); and small when both ICC >0.67 and CV <10%. Small to moderate between-session variability (ICC = 0.68-0.95, CV = 5.2-18.7%, TEM = 0.24-0.49) was associated with isometric peak force, regardless of angle. Moderate to large variability was seen in early-stage (0-50 ms) RFD and impulse (ICC = 0.60-0.80, CV = 22.4-63.1%, TEM = 0.62-0.74). Impulse and RFD at 0-100 ms, 0-200 ms, and 100-200 ms were moderately variable (ICC = 0.71-0.89, CV = 11.8-42.1%, TEM = 0.38-0.60) at all joint angles. Isometric peak force and late-stage isometric RFD and impulse measurements were found to have low intersession variability regardless of joint angle. However, practitioners need to exercise caution when making inferences about early-stage RFD and impulse measures due to moderate-large variability.


Assuntos
Contração Isométrica , Força Muscular , Humanos , Joelho , Articulação do Joelho , Masculino , Reprodutibilidade dos Testes
5.
J Sports Sci ; 40(2): 226-235, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34592911

RESUMO

he underlying biomechanical benefits of hook-grip (HG) over conventional closed-grip (CG) remain unclear. This study compared bar-path kinematics and force-time variables of the power clean (PC) performed with HG or CG. We also aimed to compared kinetic changes measured by force platform versus linear position transducer (LPT). Eleven well-trained men volunteered. Following a familiarisation session, HG, and CG 1RM conditions, were randomly completed seven days apart. System kinetics and barbell kinematics were recorded via synchronized force platform+LPT system and two-dimensional motion-capture. Statistical parametric mapping (SPM), analysis of variance, and standardised differences were utilised. The SPM cut-offs were determined via novel combination of force and displacement. No between-condition differences in normalised force-time variables of the pull or catch were detected. The first and second pull duration was similar between conditions (ES = 0.04-0.38). Conversely, catch and total PC durations were shorter at 80-95% (ES = 0.26-0.75), with the weightless phase more prolonged at 95% and 100% (ES = 0.54-0.76) with HG compared to CG. Improved timing of the turnover and catch phases appears to be the primary difference between HG and CG performance. Thus, grip type is possibly irrelevant to non-weightlifting athletes when performing submaximal catch-less derivatives..


Assuntos
Força Muscular , Levantamento de Peso , Fenômenos Biomecânicos , Força da Mão , Humanos , Masculino , Músculo Esquelético
6.
J Strength Cond Res ; 35(6): 1576-1585, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33927113

RESUMO

ABSTRACT: Watkins, CM, Storey, A, McGuigan, MR, Downes, P, and Gill, ND. Horizontal force-velocity-power profiling of rugby players: A cross-sectional analysis of competition-level and position-specific movement demands. J Strength Cond Res 35(6): 1576-1585, 2021-Speed and acceleration are crucial to competitive success in all levels of rugby union. However, positional demands affect an athlete's expression of force and velocity during the match. This study investigated maximal sprint performance and horizontal force-velocity (FV) profiles in 176 rugby union players participating in amateur club, professional, and international competitions. Rugby players were divided into 5 positional groups: tight-5 forwards (n = 63), loose forwards (n = 35), inside backs (n = 29), midbacks (n = 22), and outside (n = 27) backs. Sprint performance was averaged across 2 trials of a maximal 30-m sprint, separated by a 3-minute rest. The results demonstrated differences in sprint performance and FV profile characteristics across competitions and positional groups. Specifically, both international and professional players possessed significantly faster split times and superior FV profiles than club players (p < 0.01; effect size [ES]: 0.22-1.42). International players were significantly faster across 0-10 m than professional players (p = 0.03; ES: 0.44-0.47), whereas professional players had faster 10-20 m times (p = 0.03; ES: 0.37-0.41) and a more force-dominant profile (p < 0.01; ES: 0.71-1.00). Across positions, split times decreased and maximal velocity characteristics increased in proportion with increasing positional number, with outside backs being the fastest (ES: 0.38-2.22). On the other hand, both forwards groups had more force-dominant profiles and average sprint momentum across all distances than all backs positions. Interestingly, loose forwards had a more forceful profile and slower 10-, 20-, and 30-m split times but similar maximal velocity characteristics to inside backs, highlighting unique positional demands and physical attributes.


Assuntos
Desempenho Atlético , Futebol Americano , Corrida , Aceleração , Estudos Transversais , Humanos
7.
J Strength Cond Res ; 35(5): 1244-1255, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33780396

RESUMO

ABSTRACT: Watkins, CM, Storey, A, McGuigan, M, and Gill, ND. Implementation and efficacy of plyometric training: Bridging the gap between practice and research. J Strength Cond Res 35(5): 1244-1255, 2021-Plyometric training is an effective method for improving speed and acceleration. However, a gap seems to exist between research recommendations and practitioner's actual programs. Some reports suggest as many as 400 jumps per session, while anecdotally some strength and conditioning coaches are using as few as 15-40 jumps even with elite athletes. Thus, the purposes of this study were to obtain a clearer understanding of the practitioner's perspective on plyometric training strategies as compared to literary recommendations and to compare any trends across competition level or sport categories. An integrative mixed-methods model was used. Globally, 61 strength and conditioning practitioners completed an anonymous online survey, containing 5 sections: 1. Sport and coaching background information, 2. Plyometric training focus, 3. Periodization strategy, 4. Plyometric program details, and 5. Efficacy of plyometrics for sport performance. Questions included yes/no, multiple choice, Likert scale, percentage-based, and open-ended questions. The majority (70.5%) of respondents reported regularly implementing plyometric training and overwhelmingly (96.7%) reported positive athlete feedback surrounding its perceived efficacy. Findings confirmed that many practitioners regularly use significantly lower session volumes than previous literary recommendations (p < 0.05). In addition, significant differences were noted in many program details across competition level and sport category including volume periodization, exercise choice, and plyometric intensity. Practitioners may want to reflect on these reported group differences when building training programs best suited for their athletes. Meanwhile, future research should consider these reported perspectives when formulating interventions in attempts of bridging the gap between practice and theory.


Assuntos
Desempenho Atlético , Exercício Pliométrico , Atletas , Exercício Físico , Humanos , Força Muscular
8.
Sports Biomech ; : 1-14, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666143

RESUMO

Eccentric quasi-isometric (EQI) contractions (maintaining a yielding contraction for as long as possible, beyond task failure) have gained interest in research and applied settings. However, little is known regarding the biomechanical profile of EQIs. Fourteen well-trained males performed four maximal effort knee-extensor EQIs, separated by 180 seconds. Angular impulse, velocity, and time-under-tension through the 30-100º range of motion (ROM), and in eight ROM brackets were quantified. Statistical parametric mapping, analyses of variance, and standardised effects (Hedges' g (ES), %Δ) detected between-contraction joint-angle-specific differences in time-normalised and absolute variables. Mean velocity was 1.34º·s-1 with most (62.5 ± 4.9%) of the angular impulse imparted between 40-70º. Most between-contraction changes occurred between 30-50º (p≤ 0.067, ES = 0.53 ± 0.31, 60 ± 52%), while measures remained constant between 50-100º (= 0.069-0.83, ES = 0.10 ± 0.26, 14.3 ± 24.6%). EQIs are a time-efficient means to impart high cumulative mechanical tension, especially at short to medium muscle lengths. However, angular impulse distribution shifts towards medium to long muscle lengths with repeat contractions. Practitioners may utilise EQIs to emphasize the initial portion of the ROM, and limit ROM, or apply EQIs in a fatigued state to emphasize longer muscle lengths.

9.
J Strength Cond Res ; 35(3): 604-615, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395182

RESUMO

ABSTRACT: Watkins, CM, Gill, ND, Maunder, E, Downes, P, Young, JD, McGuigan, MR, and Storey, AG. The effect of low-volume preseason plyometric training on force-velocity profiles in semiprofessional rugby union players. J Strength Cond Res 35(3): 604-615, 2021-Rugby union is a physically demanding and complex team sport requiring athletes across all positions to express speed and acceleration. Plyometrics can effectively improve speed profiles by enhancing both force- and velocity-(FV) characteristics; however, the optimal dose and exercise direction for trained athletes is still relatively unknown. Therefore, the aim of this investigation was to determine the efficacy of a low-dose, directionally specific plyometric training program for improving speed profiles in semiprofessional rugby players. Players were randomly allocated to one of 2 plyometric training groups that performed low-volume (40-60 ground contacts per session) plyometrics twice weekly, or a control group that did not participate in any plyometric training. The 2 training groups underwent reverse back-to-back three-week vertically and horizontally focused plyometric training programs, with a 12-day washout. Body composition, aerobic capacity, and sprint performance (10-, 20-, 30-m split time, horizontal FV profile) were measured. During the intervention, HV-1 (horizontal/vertical training group 1) improved sprint performance (n = 12; ∆30 m = -0.020 seconds; p = 0.038), VH-2 (vertical/horizontal training group 2) maintained sprint performance (n = 8; ∆30 m = +0.049 seconds; p = 0.377), and the control group progressively declined in sprint performance (n = 12; ∆30 m = +0.071; p = 0.019). In addition, vertical plyometrics may preferentially benefit secondary acceleration (∆10-20 m split time: -0.01 seconds; p = 0.03) and many force-oriented FV profile characteristics. Correlational analyses (r2 = -0.568 to 0.515) showed sprint improvements were hindered in athletes with lower initial aerobic fitness, suggesting accumulated fatigue may have limited the magnitude of adaptation. Therefore, including low-volume plyometric training may be beneficial for improving sprint profiles or attenuating decrements realized during periods of high-volume sport-specific training.


Assuntos
Desempenho Atlético , Futebol Americano , Exercício Pliométrico , Corrida , Futebol , Humanos , Força Muscular
10.
Sports Biomech ; 20(2): 230-237, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30862284

RESUMO

The cable-pulley downswing is a movement similar to the golf downswing, and therefore may offer a valuable golf specific rotational diagnostic and training tool. However, to be of value, measurements need to be stable across testing occasions. Therefore, the aim of this study was to quantify the test-retest reliability of the cable downswing across a spectrum of load-velocities. Ten male participants (21.7 ± 3.0 years, 84.6 ± 9.8 kg, 1.80 ± 0.05 m) volunteered to participate over 3 testing sessions' separated by a minimum of 3 days. Participants performed maximal velocity cable downswings across eight loads (1.25-18.75 kg), which were incrementally increased by 2.5 kg. Vertical cable stack velocity was collected at 50 Hz via a GymAware linear position transducer. Downswing velocity across all eight loads was observed to be extremely reliable (change in mean = -5.1% to 2.9%, coefficient of variation = 1.5-6.4% and intra-class correlation = 0.70-0.98), with reliability increasing with increasing trials. In conclusion, the cable downswing is a reliable method of tracking rotational ability similar to the golf downswing. Practitioners should establish an upper load relative to the apparatus and participant. Future research should determine the utility and sensitivity of this measure.


Assuntos
Teste de Esforço/métodos , Golfe/fisiologia , Destreza Motora/fisiologia , Fenômenos Biomecânicos , Teste de Esforço/instrumentação , Humanos , Masculino , Reprodutibilidade dos Testes , Treinamento Resistido/instrumentação , Treinamento Resistido/métodos , Rotação , Análise e Desempenho de Tarefas , Adulto Jovem
11.
Appl Physiol Nutr Metab ; 46(4): 368-378, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33058713

RESUMO

The length-tension relationship affects knee extension performance; however, whether anatomical variations in different quadriceps regions affect this relationship is unknown. Regional (proximal, middle, distal) quadriceps thickness (MT), pennation angle, and fascicle length of 24 males (48 limbs) were assessed via ultrasonography. Participants also performed maximal voluntary isometric torque (MVIT) assessments at 40°, 70°, and 100° of knee flexion. Measures were recorded on 3 separate occasions. Linear regression models predicting angle-specific torque from regional anatomy provided adjusted simple and multiple correlations (√adjR2) with bootstrapped compatibility limits to assess magnitude. Middle vastus lateralis MT and MVIT at 100° (√adjR2 = 0.64) was the largest single correlation, with distal vastus lateralis MT having the greatest mean correlations regardless of angle (√adjR2 = 0.61 ± 0.05, mean ± SD). Lateral distal MT and architecture had larger (Δ√adjR2 = 0.01 to 0.43) single and multiple correlations with MVIT than the lateral proximal (√adjR2 = 0.15 to 0.69 vs -0.08 to 0.65). Conversely, middle anterior MT had greater (Δ√adjR2 = 0.08 to 0.38) single and multiple correlations than proximal MT (√adjR2 = 0.09 to 0.49 vs -0.21 to 0.14). The length-tension relationship was trivially affected by regional quadriceps architecture. The middle and distal quadriceps were the strongest predictors of MVIT at all joint angles. Therefore, researchers may wish to focus on middle and distal lateral quadriceps anatomy when performing ultrasonographic evaluations. Novelty: The length-tension relationship is minimally affected by regional quadriceps anatomical parameters. Middle and distal vastus lateralis and lateral vastus intermedius anatomy were consistently the best predictors of torque. Practitioners may focus their assessments on the middle and distal regions of the lateral quadriceps' musculature.


Assuntos
Músculo Quadríceps/diagnóstico por imagem , Torque , Ultrassonografia , Adulto , Humanos , Masculino , Força Muscular , Dinamômetro de Força Muscular , Músculo Quadríceps/anatomia & histologia , Adulto Jovem
12.
Eur J Appl Physiol ; 121(1): 141-158, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32995961

RESUMO

PURPOSE: Eccentric quasi-isometric (EQI) contractions have been proposed as a novel training method for safely exposing the musculotendinous system to a large mechanical load/impulse, with few repetitions. However, understanding of this contraction type is rudimentary. We aimed to compare the acute effects of a single session of isotonic EQIs with isokinetic eccentric (ECC) contractions. METHODS: Fifteen well-trained men performed a session of impulse-equated EQI and ECC knee extensions, with each limb randomly allocated to one contraction type. Immediately PRE, POST, 24/48/72 h, and 7 days post-exercise, regional soreness, quadriceps swelling, architecture, and echo intensity were evaluated. Peak concentric and isometric torque, rate of torque development (RTD), and angle-specific impulse were evaluated at each time point. RESULTS: There were substantial differences in the number of contractions (ECC: 100.8 ± 54; EQI: 3.85 ± 1.1) and peak torque (mean: ECC: 215 ± 54 Nm; EQI: 179 ± 28.5 Nm). Both conditions elicited similar responses in 21/53 evaluated variables. EQIs resulted in greater vastus intermedius swelling (7.1-8.8%, ES = 0.20-0.29), whereas ECC resulted in greater soreness at the distal and middle vastus lateralis and distal rectus femoris (16.5-30.4%, ES = 0.32-0.54) and larger echogenicity increases at the distal rectus femoris and lateral vastus intermedius (11.9-15.1%, ES = 0.26--0.54). Furthermore, ECC led to larger reductions in concentric (8.3-19.7%, ES = 0.45-0.62) and isometric (6.3-32.3%, ES = 0.18-0.70) torque and RTD at medium-long muscle lengths. CONCLUSION: A single session of EQIs resulted in less soreness and smaller reductions in peak torque and RTD versus impulse-equated ECC contractions, yet morphological shifts were largely similar. Long-term morphological, architectural, and neuromuscular adaptations to EQI training requires investigation.


Assuntos
Contração Isométrica , Músculo Esquelético/fisiologia , Mialgia/fisiopatologia , Condicionamento Físico Humano/métodos , Adulto , Humanos , Joelho/fisiologia , Joelho/fisiopatologia , Masculino , Músculo Esquelético/fisiopatologia , Mialgia/etiologia , Condicionamento Físico Humano/efeitos adversos , Tendões/fisiologia , Tendões/fisiopatologia , Torque
13.
J Hum Kinet ; 74: 23-42, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33312273

RESUMO

Individualisation can improve resistance training prescription. This is accomplished via monitoring or autoregulating training. Autoregulation adjusts variables at an individualised pace per performance, readiness, or recovery. Many autoregulation and monitoring methods exist; therefore, this review's objective was to examine approaches intended to optimise adaptation. Up to July 2019, PubMed, Medline, SPORTDiscus, Scopus and CINAHL were searched. Only studies on methods of athlete monitoring useful for resistance-training regulation, or autoregulated training methods were included. Eleven monitoring and regulation themes emerged across 90 studies. Some physiological, performance, and perceptual measures correlated strongly (r ≥ 0.68) with resistance training performance. Testosterone, cortisol, catecholamines, cell-free DNA, jump height, throwing distance, barbell velocity, isometric and dynamic peak force, maximal voluntary isometric contractions, and sessional, repetitions in reserve-(RIR) based, and post-set Borg-scale ratings of perceived exertion (RPE) were strongly associated with training performance, respectively. Despite strong correlations, many physiological and performance methods are logistically restrictive or limited to lab-settings, such as blood markers, electromyography or kinetic measurements. Some practical performance tests such as jump height or throw distance may be useful, low-risk stand-ins for maximal strength tests. Performance-based individualisation of load progression, flexible training configurations, and intensity and volume modifications based on velocity and RIR-based RPE scores are practical, reliable and show preliminary utility for enhancing performance.

14.
Appl Physiol Nutr Metab ; 45(7): 745-752, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31917597

RESUMO

Quantifying echo intensity (EI), a proposed measure of muscle quality, is becoming increasingly popular. Additionally, much attention has been paid to regional differences in other ultrasonically evaluated measures of muscle morphology and architecture. However, the variability of regional (proximal, middle, distal) EI of the vastus lateralis, rectus femoris, and lateral and anterior vastus intermedius has yet to be determined. Twenty participants (40 limbs), were evaluated on 3 occasions, separated by 7 days. Intersession variability of EI with and without subcutaneous fat correction was quantified. Furthermore, the interchangeability of corrected EI across regions was evaluated. Variability of regional quadriceps EI was substantially lower with subcutaneous fat correction (intraclass correlation coefficient (ICC) = 0.81-0.98, coefficient of variation (CV) = 4.5%-16.8%, typical error of measure (TEM) = 0.13-0.49) versus raw values (ICC = 0.69-0.98, CV = 7.7%-42.7%, TEM = 0.14-0.68), especially when examining the vastus intermedius (ICC = 0.81-0.95, CV = 7.1%-16.8%, TEM = 0.23-0.49 vs. ICC = 0.69-0.92, CV = 22.9%-42.7%, TEM = 0.31-0.68). With the exception of the rectus femoris and vastus intermedius (p ≥ 0.143, effect size (ES) ≤ 0.18), corrected EI was greater for proximal and distal regions when compared with the midpoint (p ≤ 0.038, ES = 0.38-0.82). Researchers and practitioners should utilize subcutaneous fat thickness correction to confidently evaluate EI at all regions of the quadriceps. Regional EI cannot be used interchangeably for the vastus muscles, likely because of an increase in fibrous content towards the myotendinous junctions. Novelty Regional quadriceps echo intensity was reliable with and without correction for subcutaneous fat thickness. Intersession variability of regional quadriceps echo intensity was substantially improved following subcutaneous fat correction. Quadriceps echo intensity increased towards myotendinous junctions in the vastus muscles.


Assuntos
Músculo Quadríceps/anatomia & histologia , Ultrassonografia/métodos , Adulto , Humanos , Masculino , Valores de Referência , Gordura Subcutânea , Adulto Jovem
15.
Int J Sports Physiol Perform ; 15(3): 430-436, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188706

RESUMO

PURPOSE: Regional muscle-architecture measures are reported widely; however, little is known about the variability of these measurements in the rectus femoris, vastus lateralis, and anterior and lateral vastus intermedius. The aim of this study was to quantify this variability. METHODS: Regional muscle thickness, pennation angle (PA), and calculated and extended-field-of-view-derived fascicle length (FL) were quantified in 26 participants using ultrasonography across 51 limbs on 3 occasions. To quantify variability, the typical error of measurement (TEM) was multiplied by 2, and thresholds of 0.2-0.6 (small), 0.6-1.2 (moderate), 1.2-2.0 (large), 2.0-4.0 (very large), and >4.0 (extremely large) were applied. In addition, variability was deemed large when the intraclass correlation coefficient (ICC) was <.67 and coefficient of variation (CV) >10%, moderate when ICC > .67 or CV < 10% (but not both), and small when both ICC > .67 and CV < 10%. RESULTS: Muscle thickness of all muscles and regions had low to moderate variability (ICC = .88-.98, CV = 2.4-9.3%, TEM = 0.15-0.47). PA of the proximal and distal vastus lateralis had low variability (ICC = .85-.96, CV = 3.8-8%) and moderate to large TEM (TEM = 0.42-0.83). PA of the rectus femoris was found to have moderate to very large variability (ICC = .38-.74, CV = 11.4-18.5%, TEM = 0.61-1.29) regardless of region. Extended-field-of-view-derived FL (ICC = .57-.94, CV = 4.1-11.5%, TEM = 0.26-0.88) was superior to calculated FL (ICC = .37-.84, CV = 7.4-17.9%, TEM = 0.44-1.33). CONCLUSIONS: Variability of muscle thickness was low in all quadriceps muscles and regions. Only rectus femoris PA and FL measurements were highly variable. The extended-field-of-view technique should be used to assess FL where possible. Inferences based on rectus femoris architecture should be interpreted with caution.

16.
Physiol Meas ; 41(1): 01NT02, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31851953

RESUMO

OBJECTIVE: Length-tension relationships are widely reported in research, rehabilitation and performance settings; however, several isometric contractions at numerous angles are needed to understand these muscular outputs. Perhaps a more efficient way to determine torque-angle characteristics is via isokinetic dynamometry; however, little is known about the variability of isokinetic measurements besides peak torque and optimal angle. This paper examines the variability of angle-specific isokinetic torque and impulse measures. APPROACH: Three sessions of concentric (60°·s-1) knee extensions were performed by both limbs of 32 participants. Assessments were repeated on three occasions, separated by 5-8 d. To quantify variability, the standardized typical error of measurement (TEM) was doubled and thresholds of 0.2-0.6 (small), 0.6-1.2 (moderate), 1.2-2.0 (large), 2.0-4.0 (very large) and >4.0 (extremely large) were applied. Additionally, variability was deemed large when the intraclass correlation coefficient (ICC) was <0.67 and coefficient of variation (CV) > 10%; moderate when ICC > 0.67 or CV < 10% (but not both); and small when both ICC > 0.67 and CV < 10%. MAIN RESULTS: Isokinetic torque and angular impulse show small to medium variability (ICC = 0.75-0.96, CV = 6.4%-15.3%, TEM = 0.25-0.53) across all but the longest (100°) and shortest (10°) muscle lengths evaluated. However, moderate to large variability was found for the optimal angle (ICC = 0.58-0.64, CV = 7.3%-8%, TEM = 0.76-0.86), and torque and impulse at the beginning and end of the range of motion (ICC = 0.57-0.85, CV = 11-42.9%, TEM = 0.40-0.89). Intersession variability of isokinetic torque and impulse were small to moderate at medium (90-20°) joint angles. SIGNIFICANCE: Researchers and practitioners can examine the muscle torque-angle relationship and activity-specific torque outputs within these ranges, without resorting to more strenuous and time-consuming isometric evaluations.


Assuntos
Contração Isométrica , Articulação do Joelho/fisiologia , Músculo Esquelético/fisiologia , Adulto , Voluntários Saudáveis , Humanos , Masculino , Torque , Adulto Jovem
17.
J Strength Cond Res ; 33(10): 2846-2859, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31361732

RESUMO

Oranchuk, DJ, Storey, AG, Nelson, AR, and Cronin, JB. The scientific basis for eccentric quasi-isometric resistance training: A narrative review. J Strength Cond Res 33(10): 2846-2859, 2019-Eccentric quasi-isometric (EQI) resistance training involves holding a submaximal, yielding isometric contraction until fatigue causes muscle lengthening and then maximally resisting through a range of motion. Practitioners contend that EQI contractions are a powerful tool for the development of several physical qualities important to health and sports performance. In addition, several sports involve regular quasi-isometric contractions for optimal performance. Therefore, the primary objective of this review was to synthesize and critically analyze relevant biological, physiological, and biomechanical research and develop a rationale for the value of EQI training. In addition, this review offers potential practical applications and highlights future areas of research. Although there is a paucity of research investigating EQIs, the literature on responses to traditional contraction types is vast. Based on the relevant literature, EQIs may provide a practical means of increasing total volume, metabolite build-up, and hormonal signaling factors while safely enduring large quantities of mechanical tension with low levels of peak torque. Conversely, EQI contractions likely hold little neuromuscular specificity to high velocity or power movements. Therefore, EQI training seems to be effective for improving musculotendinous morphological and performance variables with low injury risk. Although speculative due to the limited specific literature, available evidence suggests a case for future experimentation.


Assuntos
Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Fenômenos Biomecânicos , Humanos , Contração Isométrica/fisiologia , Força Muscular , Torque
18.
J Strength Cond Res ; 33 Suppl 1: S1-S18, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28195975

RESUMO

Glassbrook, DJ, Brown, SR, Helms, ER, Duncan, S, and Storey, AG. The high-bar and low-bar back-squats: a biomechanical analysis. J Strength Cond Res 33(7S): S1-S18, 2019-No previous study has compared the joint angle and ground reaction force (vertical force [Fv]) differences between the high-bar back-squat (HBBS) and low-bar back-squat (LBBS) above 90% 1 repetition maximum (1RM). Six male powerlifters (POW) (height: 179.2 ± 7.8 cm; mass: 87.1 ± 8.0 kg; age: 21-33 years) of international level, 6 male Olympic weightlifters (OLY) (height: 176.7 ± 7.7 cm; mass: 83.1 ± 13 kg; age: 22-30 years) of national level, and 6 recreationally trained male athletes (height: 181.9 ± 8.7 cm; mass: 87.9 ± 15.3 kg; age: 23-33 years) performed the LBBS, HBBS, and both LBBS and HBBS (respectively) up to and including 100% 1RM. Small to moderate (d = 0.2-0.5) effect size differences were observed between the POW and OLY in joint angles and Fv, although none were statistically significant. However, significant joint angle results were observed between the experienced POW/OLY and the recreationally trained group. Our findings suggest that practitioners seeking to place emphasis on the stronger hip musculature should consider the LBBS. Also, when the goal is to lift the greatest load possible, the LBBS may be preferable. Conversely, the HBBS is more suited to replicate movements that exhibit a more upright torso position, such as the snatch and clean, or to place more emphasis on the associated musculature of the knee joint.


Assuntos
Treinamento Resistido/métodos , Levantamento de Peso/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Masculino , Movimento , Força Muscular , Adulto Jovem
19.
Int J Sports Physiol Perform ; 14(3): 378-384, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204518

RESUMO

PURPOSE: The power clean and other weightlifting movements are commonly used in the development of muscle power. However, there is a paucity of research examining the use of the hook grip (HG) in weightlifting performance. Therefore, the purpose of this study was to compare 1-repetition maximum (1RM) and kinetic, kinematic, and qualitative variables across a range of loads (75-100%) during power-clean performance with an HG and a closed grip. METHODS: A total of 11 well-trained men (power-clean 1RM = 113.4 [15.9] kg, 1.34 × body mass) with at least 3 mo of HG experience volunteered to participate. Following a familiarization session, 1RM testing with the HG and closed grip were completed 5-7 d apart in a randomized order. Barbell kinetic and kinematic variables were recorded via a force platform and dual linear position transducer system. RESULTS: All subjects had a greater 1RM with the HG than with the closed grip (P < .001, effect size [ES] = 0.43). Peak velocity (ES = 0.41-0.70), peak power (ES = 0.43-0.61), peak force (ES = 0.50-0.57), and catch height (ES = 0.40-0.96) were significantly greater (P < .05) when using the HG at all or most of the submaximal intensities. In addition, subjects reported significantly greater perceptions of grip security, power, and technical competency at submaximal but not maximal loads. CONCLUSIONS: Athletes and coaches who implement weightlifting movements in their physical preparation should adopt the HG where possible. Furthermore, researchers and sport scientists should control and report the grip type used when performing weightlifting-type movements.


Assuntos
Desempenho Atlético/fisiologia , Treinamento Resistido/métodos , Levantamento de Peso/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Cinética , Masculino , Análise e Desempenho de Tarefas , Adulto Jovem
20.
Scand J Med Sci Sports ; 29(4): 484-503, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30580468

RESUMO

Isometric training is used in the rehabilitation and physical preparation of athletes, special populations, and the general public. However, little consensus exists regarding training guidelines for a variety of desired outcomes. Understanding the adaptive response to specific loading parameters would be of benefit to practitioners. The objective of this systematic review, therefore, was to detail the medium- to long-term adaptations of different types of isometric training on morphological, neurological, and performance variables. Exploration of the relevant subject matter was performed through MEDLINE, PubMed, SPORTDiscus, and CINAHL databases. English, full-text, peer-reviewed journal articles and unpublished doctoral dissertations investigating medium- to long-term (≥3 weeks) adaptations to isometric training in humans were identified. These studies were evaluated further for methodological quality. Twenty-six research outputs were reviewed. Isometric training at longer muscle lengths (0.86%-1.69%/week, ES = 0.03-0.09/week) produced greater muscular hypertrophy when compared to equal volumes of shorter muscle length training (0.08%-0.83%/week, ES = -0.003 to 0.07/week). Ballistic intent resulted in greater neuromuscular activation (1.04%-10.5%/week, ES = 0.02-0.31/week vs 1.64%-5.53%/week, ES = 0.03-0.20/week) and rapid force production (1.2%-13.4%/week, ES = 0.05-0.61/week vs 1.01%-8.13%/week, ES = 0.06-0.22/week). Substantial improvements in muscular hypertrophy and maximal force production were reported regardless of training intensity. High-intensity (≥70%) contractions are required for improving tendon structure and function. Additionally, long muscle length training results in greater transference to dynamic performance. Despite relatively few studies meeting the inclusion criteria, this review provides practitioners with insight into which isometric training variables (eg, joint angle, intensity, intent) to manipulate to achieve desired morphological and neuromuscular adaptations.


Assuntos
Adaptação Fisiológica , Contração Isométrica , Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Tendões/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...